error_stack/iter.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
//! Iterators over [`Frame`]s.
#[cfg_attr(feature = "std", allow(unused_imports))]
use alloc::{vec, vec::Vec};
#[cfg(nightly)]
use core::marker::PhantomData;
use core::{
fmt,
iter::FusedIterator,
slice::{Iter, IterMut},
};
use crate::Frame;
/// Helper function, which is used in both [`Frames`] and [`FramesMut`].
///
/// To traverse the frames, the following algorithm is used:
/// Given a list of iterators, take the last iterator, and use items from it until the iterator has
/// been exhausted. If that is the case (it returned `None`), remove the iterator from the list,
/// and continue with the next iterator until all iterators are exhausted.
///
/// # Example
///
/// ```text
/// 1) Out: - Stack: [A, G]
/// 2) Out: A Stack: [G] [B, C]
/// 3) Out: B Stack: [G] [E] [C, D]
/// 4) Out: C Stack: [G] [E] [D]
/// 4) Out: D Stack: [G] [E]
/// 5) Out: E Stack: [G] [F]
/// 6) Out: F Stack: [G]
/// 7) Out: G Stack: [H]
/// 8) Out: H Stack: -
/// ```
fn next<I: Iterator<Item = T>, T>(iter: &mut Vec<I>) -> Option<T> {
let out;
loop {
let last = iter.last_mut()?;
if let Some(next) = last.next() {
out = next;
break;
}
// exhausted, therefore cannot be used anymore.
iter.pop();
}
Some(out)
}
/// Iterator over the [`Frame`] stack of a [`Report`].
///
/// This uses an implementation of the Pre-Order, NLR Depth-First Search algorithm to resolve the
/// tree.
///
/// Use [`Report::frames()`] to create this iterator.
///
/// # Example
///
/// This shows in numbers the index of the different depths, using this it's possible to linearize
/// all frames and sort topologically, meaning that this ensures no child ever is before its parent.
///
/// Iterating the following report will return the frames in alphabetical order:
///
/// ```text
/// A
/// ╰┬▶ B
/// │ ╰┬▶ C
/// │ ╰▶ D
/// ╰▶ E
/// ╰─▶ F
/// G
/// ╰─▶ H
/// ```
///
/// [`Report`]: crate::Report
/// [`Report::frames()`]: crate::Report::frames
#[must_use]
#[derive(Clone)]
pub struct Frames<'r> {
stack: Vec<Iter<'r, Frame>>,
}
impl<'r> Frames<'r> {
pub(crate) fn new(frames: &'r [Frame]) -> Self {
Self {
stack: vec![frames.iter()],
}
}
}
impl<'r> Iterator for Frames<'r> {
type Item = &'r Frame;
fn next(&mut self) -> Option<Self::Item> {
let frame = next(&mut self.stack)?;
self.stack.push(frame.sources().iter());
Some(frame)
}
}
impl<'r> FusedIterator for Frames<'r> {}
impl fmt::Debug for Frames<'_> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_list().entries(self.clone()).finish()
}
}
/// Iterator over the mutable [`Frame`] stack of a [`Report`].
///
/// Use [`Report::frames_mut()`] to create this iterator.
///
/// [`Report`]: crate::Report
/// [`Report::frames_mut()`]: crate::Report::frames_mut
#[must_use]
pub struct FramesMut<'r> {
stack: Vec<IterMut<'r, Frame>>,
}
impl<'r> FramesMut<'r> {
pub(crate) fn new(frames: &'r mut [Frame]) -> Self {
Self {
stack: vec![frames.iter_mut()],
}
}
}
impl<'r> Iterator for FramesMut<'r> {
type Item = &'r mut Frame;
fn next(&mut self) -> Option<Self::Item> {
let frame = next(&mut self.stack)?;
let frame: *mut Frame = frame;
// SAFETY:
// We require both mutable access to the frame for all sources (as a mutable iterator) and
// we need to return the mutable frame itself. We will never access the same value twice,
// and only store their mutable iterator until the next `next()` call. This function acts
// like a dynamic chain of multiple `IterMut`. The borrow checker is unable to prove that
// subsequent calls to `next()` won't access the same data.
// NB: It's almost never possible to implement a mutable iterator without `unsafe`.
unsafe {
self.stack.push((*frame).sources_mut().iter_mut());
Some(&mut *frame)
}
}
}
impl<'r> FusedIterator for FramesMut<'r> {}
/// Iterator over requested references in the [`Frame`] stack of a [`Report`].
///
/// Use [`Report::request_ref()`] to create this iterator.
///
/// [`Report`]: crate::Report
/// [`Report::request_ref()`]: crate::Report::request_ref
#[must_use]
#[cfg(nightly)]
pub struct RequestRef<'r, T: ?Sized> {
frames: Frames<'r>,
_marker: PhantomData<&'r T>,
}
#[cfg(nightly)]
impl<'r, T: ?Sized> RequestRef<'r, T> {
pub(super) fn new(frames: &'r [Frame]) -> Self {
Self {
frames: Frames::new(frames),
_marker: PhantomData,
}
}
}
#[cfg(nightly)]
impl<'r, T> Iterator for RequestRef<'r, T>
where
T: ?Sized + 'static,
{
type Item = &'r T;
fn next(&mut self) -> Option<Self::Item> {
self.frames.by_ref().find_map(Frame::request_ref)
}
}
#[cfg(nightly)]
impl<'r, T> FusedIterator for RequestRef<'r, T> where T: ?Sized + 'static {}
#[cfg(nightly)]
impl<T: ?Sized> Clone for RequestRef<'_, T> {
fn clone(&self) -> Self {
Self {
frames: self.frames.clone(),
_marker: PhantomData,
}
}
}
#[cfg(nightly)]
impl<'r, T> fmt::Debug for RequestRef<'r, T>
where
T: ?Sized + fmt::Debug + 'static,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_list().entries(self.clone()).finish()
}
}
/// Iterator over requested values in the [`Frame`] stack of a [`Report`].
///
/// Use [`Report::request_value()`] to create this iterator.
///
/// [`Report`]: crate::Report
/// [`Report::request_value()`]: crate::Report::request_value
#[must_use]
#[cfg(nightly)]
pub struct RequestValue<'r, T> {
frames: Frames<'r>,
_marker: PhantomData<T>,
}
#[cfg(nightly)]
impl<'r, T> RequestValue<'r, T> {
pub(super) fn new(frames: &'r [Frame]) -> Self {
Self {
frames: Frames::new(frames),
_marker: PhantomData,
}
}
}
#[cfg(nightly)]
impl<'r, T> Iterator for RequestValue<'r, T>
where
T: 'static,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.frames.find_map(Frame::request_value)
}
}
#[cfg(nightly)]
impl<'r, T> FusedIterator for RequestValue<'r, T> where T: 'static {}
#[cfg(nightly)]
impl<T> Clone for RequestValue<'_, T> {
fn clone(&self) -> Self {
Self {
frames: self.frames.clone(),
_marker: PhantomData,
}
}
}
#[cfg(nightly)]
impl<'r, T> fmt::Debug for RequestValue<'r, T>
where
T: fmt::Debug + 'static,
{
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_list().entries(self.clone()).finish()
}
}